
5 Counting

5.1 The Basics of Counting

1. two basic principles of counting are the sum rule and the product rule. We present them
for two sets, but they both generalize to larger families of sets.

2. the product rule tells us in how many ways you can make one choice from each of two
sets of alternatives:

Theorem 1 (Product Rule) For any choice of sets A and B, |A ×B| = |A||B|.

3. Example: Suppose that you are in a restaurant, and are going to have soup and salad.
There are two soups and four salads on the menu. How many choices do you have? By
the Product Rule, there are 2 · 4 = 8 ways to have both soup and salad.

4. the sum rule tells you in how many ways you can make a single choice from two disjoint
sets of alternatives (mostly used to add up the solution from different cases that can
produce a solution):

Theorem 2 (Sum Rule) If A ∩B = ∅, then |A ∪B| = |A| + |B|.

Although the sum rule tells us that the cardinality of the union of two disjoint sets is
the sum of the cardinalities of the two sets, it is typically applied to problems that do
not immediately remind us of sets.

5. Example: Suppose that you are in a restaurant, and you are going to have either soup
or salad but not both. There are two soups and four salads on the menu. How many
choices do you have? By the Sum Rule, you have 2 + 4 = 6 choices.

6. Example: We combine the sum and product rules. An example of this application
counts the number of passwords adhering to some simple constraints: the length must
be at least 5 and at most 7, it must be constructed of uppercase alpha characters and
decimal digits, and must contain at least one digit.
Solution: By the sum rule, the total number P is given by P = P5 + P6 + P7, where
Pi is the number of legal passwords of length i. But what is P5? Notice that the num-
ber of illegal passwords of length 5 is easy to count: there are 265 passwords that do
not contain any digits (i.e. there ar 265 passwords that contain letters only). It follows
that P5 is the total number of passwords on 26 letter s and 10 digits, minus the illgal
passwords: P5 = 365 − 265 = 48584800. This is an example of indirect counting: to find
the number of ways to perform a task in the presence of constraints, we instead count
the number of ways to perform the task with no constraints and subtract from it the
number of ways to perform the task while violating those constraints. This method is



sometimes easier, and should not be overlooked. We can use the same approach to find
P6 = 366 − 266 = 1867866560 and P7 = 367 − 267 = 70332353920, and the problem is
solved: there are

P5 + P6 + P7 = 72248805280

acceptable passwords.

7. The basic Principle of Inclusion-Exclusion extends the sum rule to situations in which
the two sets of alternatives are not disjoint. The basic instance of the principle applies
to unions of two sets.

• If two sets A and B are disjoint, the cardinality of their union is simply |A ∪ B| =
|A| + |B| (this is the sum rule).

• If two sets A and B are not disjoint, say A ∩B 6= ∅, then

|A ∪B| = |A| + |B| − |A ∩B|,

which is the inclusion-exclusion principle. To see this, note that if x ∈ A ∩B, then
x is counted twice in |A| + |B|: once in |A| and once in |B|. This applies to every
element in A ∩B, so we must subtract |A ∩B| to correct the overcount.

Example:

(a) Let A = {1, 2, 3, 4, 5} and B = {3, 4, 5, 6, 7}. Then A ∪ B = {1, 2, 3, 4, 5, 6, 7}. By
inspection, |A ∪B| = 7, but you can also verify that

|A ∪B| = 7 = 5 + 5 − 3 = |A| + |B| − |A ∩B|.

(b) How many positive integers not bigger than 20 are divisible by either 2 or 3?
Solution: There are b20/2c = 10 that are divisible by 2, and b20/3c = 6 that are
divisible by 3. But there are also b20/6c = 3 that are divisible by both 2 and 3, so
the total is 10 + 6 − 3 = 13.

(c) How many bitstrings of length eight either begin with 00 or end with 101? Solution:
There are 26 that begin with 00, 25 that end with 101, and 23 that start with 00 and
end with 101. So the number of bitstrings with at least one of the two properties is
26 + 25 − 23 = 88.

(d) How many bitstrings of length five contain either 11 or 000 (possibly both)? Solu-
tion: First let’s find out how many contain 11. There are 23 that begin with 11.
Note that we have already counted all those that have the form 111xy, so in order to
count only “new” strings we count those that begin with 011; there are 22 of these.
Pushing the first occurrence of 11 further to the right, we find that there are 22 of
the form x011y, and finally 22 of the form xy011. Oops! This last form includes
11011, which we’ve already counted, so we compensate: there are 22 − 1 = 3 “new”
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strings of the form xy011. Thus there are 23 + 22 + 22 + 3 = 19 that contain 11.
How many contain 000? We take a similar approach. There are 22 = 4 that begin
with 000. There are 2 that begin with 1000. Finally, there are 2 of the form x1000,
for a grand total of 4 + 2 + 2 = 8. So there are nineteen with 11, and eight with
000. There are also 2 with both substrings, namely 11000 and 00011, so the final
tally is 19 + 8 − 2 = 25 bitstrings with either 11 or 000.

8. The Principle of Inclusion-Exclusion extends to larger collections of sets as well.

|A ∪B ∪ C| = |A| + |B| + |C| − |A ∩B| − |A ∩ C| − |B ∩ C| + |A ∩B ∩ C|.

The principle generalizes to more than three sets.

9. A finite sequence of choices can be represented by a tree diagram, in which the root repre-
sents the initial state, leaves represent outcomes, internal vertices represent intermediate
states, and edges represent choices. Figure 1 shows a decision tree used to enumerate
bitstrings of length three that do not contain 11. The leaves, from left to right, repre-
sent the strings 101, 100, 010, 001, and 000. You can see that any branch containing
consecutive 1s has been pruned out, leaving only those that do not contain 11. And you
can probably guess that the utility of tree diagrams, like that of truth tables and Venn
diagrams, is limited to small problems. On the other hand, the tree structure lends itself
to computation, so you will probably see this again.
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Figure 1: A decision tree for counting 11-free strings

5.2 The Pigeonhole Principle

1. The Pigeonhole Principle says that if k+1 pigeons fly into k pigeonholes (or into at most
k pigeonholes), at least one pigeonhole must contain at least two pigeons.

Theorem 3 (The Pigeonhole Principle) If k pigeons occupy j < k pigeonholes, then at
least one pigeonhole contains at least two pigeons.
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Example:

(a) The “hello, world” problem for the pigeonhole principle is the “sock problem”: In
your dresser drawer you have a jumble of socks in two colors, say blue and gray. It’s
dark, and you don’t want to wake your spouse. How many socks must you grab to
guarantee that you have a pair of the same color?

Solution: Three socks suffice. You might end up with three blue, or three gray,
but with only two colors you’re guaranteed to have at least two blue or at least two
gray.

(b) Show that in a group of eight people there must be two whose birthdays fall on the
same day of the week.

Solution: The pigeons are the people in the group, and the pigeonholes are the
days of the week. Since there are 8 people and 7 days, two people must share a day.

The first generalization of the principle is this:

Theorem 4 If n pigeons occupy k pigeonholes, then at least one pigeonhole contains at
least dn/ke pigeons.

We can use this version to answer more difficult questions: What is the smallest n such
that at least one of k boxes must contain at least r of n objects? By Theorem 2, in order
to have at least r objects into a box, we need dn/ke ≥ r
n/k > r − 1
n > k(r − 1).Sothesmallestintegernthatforcessomeboxtocontainrofnobjectsisn=k(r-
1)+1.

5.3 Permutations and Combinations

1. recall: for integers n ≥ 0, the factorial f(n) = n! is defined by

n! =

{
1, if n = 0;
(n − 1)!n, if n > 0.

2. a permutation is an ordering, or arrangement, of the elements in a finite set:
Definition: A permutation π of A = {a1, a2, . . . , an} is an ordering aπ1 , aπ2 , . . . , aπn of the
elements of A (no repeats in the list). Example: a permutation of A = {1, 2, 3} is 1, 3, 2

3. there are n! permutations of an n-element set (an n-element set is also called an n-set).

4. an r-permutation of an n-set A (r ≤ n) is an ordering aπ1 , aπ2 , . . . , aπr of some r-subset
of A. Example: a 3-permutation of the 4-set A = {1, 2, 3, 4} is 2, 4, 3, and a different one
is 2, 3, 4 (since they are sequences and so the order matters).
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5. there are P (n, r) of these:

P (n, r) = n(n− 1)(n− 2) · · · (n− r + 1) =
n(n − 1) · · · (n − r + 1) · · · (2)(1)

(n − r)(n − r − 1) · · · (2)(1)
=

n!

(n − r)!
.

6. Note that both permutations and combinations apply in cases when repetitions are not
allowed.

7. Example: The number of 3-digit decimal numbers with no repeated digit is P (10, 3) =
720 (leading zeros allowed). This could also be done using the product rule: 10·9·8 = 720

8. Example: The number of 3-digit decimal numbers with repetition (and leading zeros)
allowed is by the product rule 103 = 1000.

9. an r-combination of an n-set A (r ≤ n) is an r-subset {ai1 , ai2 , . . . , air} of the n-set A.
Example: a 3-combination of the 4-set A = {1, 2, 3, 4} is {2, 4, 3} (which is the same
as the 3-combination {2, 3, 4} since {2, 4, 3} = {2, 3, 4}, as the order in a set does not
matter).

10. there are C(n, r) of these. The number C(n, r) is also commonly written
(

n
r

)
, which

is called a binomial coefficient. These are associated with a mnemonic called Pascal’s
Triangle and a powerful result called the Binomial Theorem, which makes it simple to
compute powers of binomials. (The inductive proof that the binomial theorem is a bit
messy, and it becomes easier if it uses the idea of combinatorial proof -see MA 3025. A
combinatorial proof that we work with here consists of arguing that both sides of an
equation of two integer expressions are equal to the cardinality of the same set.)

11. note that we could construct an r-permutation of an n-set in two steps: first take an
r-combination, then take a permutation of the r-combination. It follows by the Product
Rule that P (n, r) = r!C(n, r), but then

C(n, r) =
1

r!
P (n, r) =

n!

r!(n − r)!
.

This is not a practical formula for hand computation, but we can find a better one
without too much difficulty. It looks like this:

C(n, r) =
n!

r!(n − r)!
=

n(n − 1) · · · (n − r + 1)(n − r)!

r!(n − r)!
=

n(n − 1) · · · (n − r + 1)

r!
; (1)

note that there are exactly r factors in numerator and denominator alike.

12.

C(n, r) =
n!

r!(n − r)!
=

n!

(n − r)!r!
=

n!

(n − r)!(n − (n − r))!
= C(n, n − r). (2)
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This makes some potentially nasty computations pretty easy to carry out. For example,

what is C(100, 98)? By definition, C(100, 98) =
100!

98!2!
, which is beyond the range of

many calculators. And if we use formula (1) for hand computation of r-combinations,
we’ll have 98 factors in both numerator and denominator. But by (2) and (1) together,
we have

C(100, 98) = C(100, 2) =
(100)(99)

2!
= 50 · 99 = 4, 950.

13. some problems could be solved using both multiplication principle and the permutations.
However, the multiplication principle is a good tool for strings where the position of a
particular strings is specified (like a string of length 7 that begins with 111), versus the
permutations and combinations that apply to the cases where the position is not specified
(like a string of length 7 that contains three 1s)
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